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ARTICLE INFO ABSTRACT

Keywords: A spurious actuation of an industrial instrumentation and control (I&C) system is a failure mode where the
Model checking system or its component inadvertently produces an operation without a justified reason to do so. Design issues
& leading to spurious failures are difficult to analyse, but pose a high risk for safety. Model checking is a formal
Spurious failure o verification method that can be used for exhaustive analysis of I&C systems. In this paper, we explain how formal
Model-based system engineering properties that address spurious failures can be specified, and how model checking can then be used to verify
1&C application logic designs based on vendor-specific function block diagrams. Based on over ten years of
successful practical projects in the Finnish nuclear industry, we present 21 real-world design issues (representing
37% of all detected issues), each involving a systemic failure that could lead to spurious actuation of nuclear
safety I&C. We then describe how random failures of the underlying hardware architecture—another cause for
spurious actuation—can also be included in the models. With an experimental evaluation based on real-world
nuclear industry models, we demonstrate that our method can be effectively used for the verification of single

failure tolerance.

1. Introduction

Spurious actuation is defined as a failure mode where an actuation
of an instrumentation and control (I&C) system function occurs without
a real demand [1]. The terms “inadvertent operation” or “active
failure” [2] are also used. (In contrast, “passive failure” [2] means that
the system fails to produce the required response.) In a nuclear power
plant, a spurious failure can limit the ability of safety systems to
function properly, and challenge the safety of the plant [3]. Nuclear
regulatory bodies agree that spurious actuation is a particular safety
concern [4], and that safety of systems “cannot be discussed and shown
to exist” without considering unintended behaviour of both hardware
and software [5].

Active failures can be further divided into random and systematic
failures [2]. Random failures [6] can occur at any time, and the prob-
ability of their occurrence can increase due to aging of hardware
components. Systematic failures [6], on the other hand, are determi-
nistically related to a cause that can be eliminated by a modification of

the design, e.g., a software design error.

By their nature, spurious failures are more complex to analyse than
passive failures [1]. It is more straightforward to think of test cases for
the intended functionality. Spurious failures are also a multidisciplinary
issue, as the failure can be caused by any component between the
process measurement sensors and the actuators [1], but also by support
systems (power supply, cooling), environmental effects, human actions,
or plant transients [3].

One of the safety design principles in nuclear power plants (NPPs) is
defence-in-depth—establishment of several successive physical barriers
for containing accidents. Still, spurious actuation of a safety I&C system
is a hazard that can potentially challenge more than one barrier si-
multaneously [7]. As more complex I&C architectures are more difficult
to design and verify, adding numerous defence-in-depth levels can ac-
tually increase the risk of spurious actuation [2].

Another NPP design principle that can be used to deal with spurious
actuation from random failure is redundancy-adding redundant sub-
systems, and voting on control actions. Together, the subsystems are
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then capable of performing the desired tasks even if any single com-
ponent in them fails. The same solution is also used for safety critical
applications in, e.g., aviation [8,9], aerospace [10-12], railway [13],
or automotive [14] industries. Further failure tolerance is achieved
with diversity—by using different technologies or design principles in
redundant back-up systems.

Nevertheless, aside from emphasizing good design principles like
defence-in-depth, single failure tolerance, quality, independence and
qualification [7], the challenge remains: How to ensure that I&C sys-
tems do not contain design issues that might lead to spurious actuation?
Modern I&C systems are so complex in terms of both hardware and
software (platform and application) that 100% test coverage is practi-
cally impossible. The risk of systemic failure remains.

Model checking [15] is a formal verification method where a stated
formal property of a system is verified through exhaustive exploration
of all the reachable states of a model of that system. It is a proven
method for exhaustive verification of a nuclear I&C system’s application
logic, regardless of whether the logic is implemented with program-
mable logic controller (PLC) software or field-programmable gate array
(FPGA) configuration [16]. Since the formal properties can also address
unwanted behaviour, the method can also be used to identify systemic
failures leading to spurious actuation. However, the focus is often on
the logic specification (e.g., a function block diagram), alone. In reality,
the application logic operates on hardware components subject to
random failure. Verifying that the system and the intended function-
ality are also fault tolerant calls for modelling of both the application
logic and the failure modes of the underlying hardware architecture, in
unison.

This paper is an extended version of [17], and includes a practical
evaluation of ideas presented in [18]. The contribution is fourfold. First,
we discuss the types of formal properties needed for analysing spurious
actuation, the relationships between them, and the challenges in their
formalisation. Second, we introduce a modelling approach and a
practical tool for verifying I&C application logics, and discuss their
inherent limitations. Third, we present data and discuss the character-
istics of the 21 design issues VTT' has revealed in practical nuclear
industry projects, each example involving a scenario where the appli-
cation logic design causes a spurious actuation. Fourth, we show how
the application logic model can be supplemented with hardware fail-
ures, and demonstrate using real-world nuclear industry models that
the modelling method can effectively be used to verify single failure
tolerance.

The rest of the paper is structured as follows. In Section 2, we in-
troduce the basics of model checking, and discuss the use of temporal
logic languages for specifying formal properties that deal with spurious
actuation. In Section 3, we describe an example of a fault-tolerant, four-
redundant nuclear I&C safety system, and describe how a graphical
frontend for the NuSMV [19] model checker—called MOD-
CHK—processes nuclear industry specific aspects of application logics.
We then list design issues revealed in practical customer projects, and
include a real example. In Section 4, we describe a method for mod-
elling failures of the underlying I&C hardware components, and then
evaluate the method-again using real nuclear industry application logic
models. We analyse related research in Section 5, discuss our results in
Section 6, and present our conclusions in Section 7.

2. Formal verification
2.1. Model checking

Model checking [15] is a formal verification method where a soft-
ware tool called a model checker is used to specify a formal model and
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analyse whether a desired property holds for it through exhaustive
exploration of all its reachable states. The desired properties are for-
malised using temporal logic languages like Linear Temporal Logic
(LTL), Computation Tree Logic (CTL) [15] or Property Specification
Language (PSL) [20]. If an execution path that violates the property is
found, it is returned to the user as a counterexample scenario, possibly
revealing a design issue.

Formally, the model of the system is a Kripke structure, a tuple
(S, So, T, AP, L), where S is a set of states, Sy C S is a set of initial states,
TCS x S is the transition relation, AP is a set of atomic propositions,
and L: S — 22? is a labeling function. In addition, we assume that the
model has a number of Boolean or integer state variables such that each
state corresponds to a unique assignment of these variables. In this case
atomic propositions can be thought of as either Boolean variables or
bits of integer variables, and the labeling function essentially returns
the assignment of variables to a state. An execution path (or, simply, a
path) of a model is a finite or infinite sequence (s, $, ...) such that
So € Sp and (s;, s;41) € T for all i = 0. A state s € S is reachable if it
belongs to some path. Below, speaking of a state space, we will mean
the set of reachable states.

A fundamental challenge in model checking is to avoid state space
explosion, where the number of model states to enumerate through
becomes enormous [15]. Symbolic model checkers—like the popular
open source tool NuSMV [19]—employ Binary Decision Diagrams
(BDD), which provide a canonical representation for Boolean formulae.
BDD processing allows avoiding explicit state enumeration [21]. An-
other solution to make the analysis faster is to use Boolean (or propo-
sitional) satisfiability (SAT) solvers to perform bounded model checking
(BMC), where the allowed length of checked state transition sequences
is limited [22]. SAT solvers are also used to check whether a Boolean
formula holds in all reachable states with inductive methods [23].

NuSMV is based on synchronous processing of model components
over discrete time, where time corresponds to the number of executed
transitions, but continuous model checkers are also available (e.g.,
UPPAAL [24]), as well as tools like HyComp [25] for hybrid systems.

2.2. Formal property specification

Most (but not all) formal properties can be cast into one of two
types: safety properties dictate that something shall not happen, and
liveness properties dictate that something shall eventually happen [26].
More formally, a finite execution cannot violate a liveness property—-a
counterexample must be lasso-shaped [15] (with a loop at the end),
instead. Conversely, an execution path that violates a safety property
can always be truncated to a finite one, and there is an identifiable time
step where the undesired state occurs. Therefore, the properties that are
specifically written to prove the absence of spurious actuation are safety
properties.

Temporal logic languages provide a formalism to formulate state-
ments over execution paths, not just individual states [15] (typically,
only infinite execution paths are considered). For this purpose, LTL and
CTL utilize so-called temporal operators in addition to Boolean con-
nectives. The following temporal operators are defined in LTL (using
notation from [15]):

® X p: p is true in the next state of the path (“neXt”).

e G p: p is true at every state on the path (“Globally”).

e F p: p is true at some future state on the path (“Finally”).

e p U q: q is true at some future state, and at every preceding state on
the path, p is true (“Until”).

In the above expressions, p and q can be Boolean statements over
state variables as well as nested temporal formulae.

In addition to describing future behaviour, being able to refer to
past states is often convenient. Past LTL operators, as suggested in,
e.g., [27], include:
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e Y p: p holds in the previous state on the path. Y p is false in the
initial state (“Yesterday™).

® Z p is equivalent to Y p, except that it is true in the initial state.

e H p: p is true at every preceding (and the current) state on the path
(“Historically”).

e O p: p is true at some past (or the current) state on the path
(“Once”).

® p S q: q is true at some past state, and for every state that has then
followed on the path, p has been true (“Since”).

CTL is based on branching time, adding path quantifiers A (“for all
execution paths”) and E (“for some execution path”).

Property Specification Language (PSL) [28] is an extension of LTL
and CTL designed to be compatible with hardware description lan-
guages. In addition to aiming at human readability [20], PSL offers an
“LTL style” called Sequential Regular Expressions (SERE), which is
convenient for describing multi-cycle behaviour. As an example [20],
the property “if req is true, then, on the next cycle, ack is true for one
cycle, then busy is true for three cycles, and then done is true for one
cycle” is written as:

always {req} |=>{ack ;busy[*3] ;done}!;

In the example, “always” stands for G, and the repetition operator
[*n] replaces nested X expressions. The SERE style of PSL can be useful
in specifying I&C system properties related to timing and control se-
quencing [29].

2.3. Specifying properties for spurious failures

To detect a spurious actuation scenario, the analyst does not ne-
cessarily have to specify any property for that specific purpose. Any
specified property can reveal a counterexample where a spurious ac-
tuation occurs. For example, if the property addresses a requirement for
opening a valve on high pressure, the counterexample can show the
system model sending a close command on high pressure, instead.

Nevertheless, it is important for the analyst to consider unwanted
system behaviour separately. Requirement specification documents do
not typically include self-evident statements such as “the system shall
not end up in a deadlock / send contradictory commands / actuate
spuriously”. Such requirements might be omitted due to, e.g., the dif-
ficulty in their verification. For any property that captures a desired
(“good”) behaviour, there may be several complementary properties
that capture unintended (“bad”) behaviour. Thankfully, spurious ac-
tuation properties share a type of symmetry with the intended-beha-
viour properties.

Below, we consider four types of desired behaviours for I&C sys-
tems, and the associated properties for addressing spurious actuation
(see Fig. 1). First, immediate response means that the system shall give
the actuation order (response) if and only if the actuation criteria (re-
quest) is true. Second, delayed response means that the response shall
occur a time after the request. In the bounded variant, the response
follows the request after a set amount of time steps. In the unbounded
variant, the response occurs after an unspecified time. Finally, triggered
response means that the response shall occur immediately upon re-
quest, but may last longer.

For immediate response, the intended property “a request shall lead
to a response” can be written in LTL as the property:

G(request — response). (€8]

The counterexample would then contain a state where the request
holds but the response is not true. However, (1) holds in a scenario
where the response is true but the request is not. In order to address
spurious actuation, let us turn (1) around to state: “a response implies
that there is a request”, or:

G(response — request). 2

For delayed response-bounded, the intended property is expressed
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Immediate response

request I—I
response I—I

Delayed response—bounded

request
response |_|

Delayed response—unbounded

request

response

Triggered response

request
response J I_,
| | | | | | | | | | |

Fig. 1. Types of intended response to an actuation request.

using nested X operators, e.g., for a delay of three time steps:
G(request - X(X(X response))). 3)

The complementary spurious property, using nested Y operators,
reads:

G(response — Y(Y(Y request))). 4

For delayed response—unbounded, we formulate the more general
liveness property “a request shall eventually lead to a response”, or:

G(request — F response). 5)

In order to address spurious actuation, the counterpart safety
property is:
G(response — O request). 6)

The symmetry of the above formulas exemplifies why, as stated
in [27], Y and O are the “temporal duals” of X and F, respectively. If
past temporal operators cannot be used, (6) can be rewritten using the
less intuitive but equivalent expressions: —( — request
U (response A - request)) [30], or: (G - response) V ( - response
U request) [31].

For triggered response, (1) and (2) do not apply, and an intended
property “response shall be true when request changes from false to
true” is written as:

G(( = request A Xrequest)—
X response). )
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request
response

Fig. 2. Even if the latter occurrence of response is considered a spurious ac-
tuation, the property G(response — O request) will not reveal the issue.

A corresponding spurious property would then read:

G(( = response A Xresponse)—
(- request A Xrequest)). ®

If request being true at the initial state should count as a triggering
event, (7) can be modified to:

G((Z - request A request)—
response). 9

and the spurious property (8) to:

G((Z — response A response)—
(Z - request A request)). (10)

The desired behaviour can also be a combination of delayed re-
sponse and triggered response, in which case (4), (8) or (10) will not
apply as such, but (6) can still be used. (6) is also true if (2) is true.

While (6) can be thought of as a “universal” spurious property (see
also the properties listed in Appendix A), it should be noted that a single
past occurrence of request satisfies (6) even if there are several future
occurrences of response. If the latter occurrence of response in Fig. 2 is
considered a spurious actuation, the property will nevertheless hold.

In order to detect the spurious actuation scenario in Fig. 2, we can
specify that a response shall be preceded by a request, and there has not
been a (finished) response since that request:

G(response — ( — ((Y response) A
—response) S request)). 11

2.4. Open-loop vs. closed-loop modelling

I&C systems can be verified using open-loop or closed-loop models.
Open-loop models only include the I&C logic, and do not account for
feedback from the controlled process. In closed-loop modelling, feed-
back from the plant helps in filtering out irrelevant model behaviours,
and can therefore reduce the state space [32].

Analysing architecture-level requirements (including non-functional
requirements such as failure tolerance) is only possible if the plant is
modelled as a whole. Model-based Systems Engineering (MBSE) is an
approach that can be described as “the formalized application of
modelling principles, methods, languages, and tools to the entire life-
cycle of large, complex, interdisciplinary, sociotechnical systems” [33].
The key artefact in MBSE is a unified, coherent system model.

However, generating an accurate plant model for closing the loop
can be challenging. Limiting the model behaviour can accidentally
eliminate model executions relevant for safety, and the analysis times
can actually increase [34]. We therefore continue to work with open-
loop models of the I&C application logic, but, in Section 4, introduce
hardware failures in order to verify single failure tolerance.

3. Verification of nuclear i&c systems
3.1. Nuclear power plant i&c systems and failure tolerance

For obvious reasons, the I&C systems of a nuclear power plant need
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to be failure tolerant. Single failure criterion means that the system
shall be able to perform its function even if any single component de-
signed for the function fails. Protection against single failure is achieved
using several (perhaps identical) redundant subsystems placed in phy-
sically separated divisions.

Consequential failure refers to “a failure caused by a failure of an-
other system, component or structure or by an internal or external
event at the facility” [35]. For example, a failure of a power supply or
ventilation system can result in the subsequent total failure of several
I&C devices, but is still considered a single failure that shall be toler-
ated.

Common cause failure (CCF) refers to a “failure of two or more
structures, systems and components due to the same single event or
cause” [35]. Protection against CCF can be achieved using diverse
backup systems (e.g., a different supplier, technology, or operating
principle).

Single failure criterion is in the Finnish nuclear safety requirements
referred to as N+ 1. An even stricter criterion called N + 2 is used for the
most critical systems (e.g., the reactor trip system). N+ 2 means that in
addition to the single failure, the system still needs to perform its
function even if “any other component or part of a redundant sys-
tem—or a component of an auxiliary system necessary for its oper-
ation—is simultaneously out of operation due to repair or main-
tenance” [35]. N+ 2 can be fulfilled with a three-redundant structure
where one operating division is sufficient for performing the function
(3 X 100%), or a four-redundant structure where two operating di-
visions are needed (4 X 50%). In Finland, digital I&C systems of the
highest safety class” are in practice always four-redundant.

As an example of a four-redundant I&C system, let us consider the
Protection System (PS) of the proposed U.S. version of the European
Pressurized Water Reactor (EPR) nuclear plant [36]. PS is based on
Areva NP’s TELEPERM XS technology, and each of the four independent
divisions is located in a separate building [37] (see Fig. 3).

The PS utilizes different types of functional units [36]. The Acqui-
sition and Processing Units (APUs) acquire signals from the process
sensors and monitoring systems via the Signal Conditioning and Dis-
tribution System (SCDS) using a hardwired connection, perform cal-
culations and setpoint comparisons, and distribute the results to the
Actuation Logic Units (ALUs) for voting. The ALUs perform voting over
processing results and issue actuating results, taking into account op-
erator commands from the Safety Information and Control System
(SICS). The actuation orders are then sent from the ALUs to the Priority
and Actuator Control System (PACS) via a hardwired connection.

The Monitoring and Services Interfaces (MSI) units provide status
monitoring, and information for display to operators via the Process
Information and Control System (PICS). The Service Unit (SU) is used
for system diagnosis and periodic testing.

Single failures that occur before the voting logic are handled by the
voting logic in the ALU. Single failures at the voting logic level are
handled by either redundancy within each division or redundancy
across the four divisions. In the application logic (processed by the
APUs and the ALUs), each signal has a status, which is set to “fault”
upon failures detected by input modules of function processors. The
status is then used to exclude invalid signals in selection (e.g., second-
maximum, second-minimum®) and voting (n-out-of-m) blocks [36].

The notion of status or validity is not specific to Areva NP’s TELE-
PERM XS technology, but is also used in a similar manner in Rolls-
Royce’s digital I&C platform Spinline [38].

2 Finnish Safety Class 2 for I&C systems and equipment.

3 These blocks select the second-largest and second-smallest of their input
values, so that a single measured value alone crossing a limit would not lead to
(potentially spurious) actuation.
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SCDS SICS SU PICS SCDS SICS SU PICS SCDS SICS SU PICS SCDS SICS SU PICS
A A A A A A A A A A A A
Div. 1 ' Div. 2 ' Div. 3 Div. 4 Y
ALU1|V' """ ALU1|‘ ALU1|V' """ ALU1|V' """
APU 1 APU 1 APU 1 APU 1
MSI | b, N BV MSI | b, | MSI MSE | b, MSI MSI | b, MSI
1 1YV Yil 1 1Y Yii L 1V Yii L 1V Yii
ALU 1 ALU 2 ALU 1 ALU 2 ALU 1 ALU 2 ALU 1 ALU 2
OR OR OR OR
\j \j \j \j
PACS PACS PACS PACS

-------------- » Hardwired connection

—!—i— Profibus network

Fig. 3. Simplified architecture of the U.S. EPR Protection System (modified from [33]).

3.2. Work process for model checking

Based on previous research [39] and practical experience [40], VTT
has developed a work process for the verification of vendor-specific,
non-standard 1&C logics4 (see Fig. 4).

The first tasks are model boundary definition and requirement eli-
citation. Functional requirements can be found in system requirement
specifications, or other documents containing suitable descriptions
(e.g., a user manual).

The modelling work begins with the construction of a library of
basic function blocks, using the input language of NuSMV [40]. Manual
specification of the block library is necessary, since nuclear I&C system
suppliers use vendor-specific solutions (such as signal validity). The
proprietary source code for the blocks might not be available, so spe-
cification is based on functional descriptions (e.g., a function block user
manual). Confidence can be gained by verifying the blocks’ im-
plementation against formal properties, checking the equivalence of
differing implementations created by two analysts independently, or
synthesis-aided methods [42].

The analyst then models the selected I&C functions using the library
of basic function block code elements, and specifies formal properties in
LTL, CTL and/or PSL [29] based on the collected requirements.

A NuSMV counterexample can reveal an error in the model or an
incorrectly specified property (causing a “spurious counter-
example” [43]), in which case the analyst fixes the error, and runs
NuSMV again [39]. If NuSMV produces a counterexample that—after
close inspection of the source documents—can only be explained by a
problem in the design, the issue is documented and reported to relevant
stakeholders.

The only fully automated part of the process is verification with

*While function block diagrams are a “programming language” [41], we
discuss the verification of “logic” rather than “software”. First, the actual source
code (automatically generated based on the diagrams) is typically unavailable
in nuclear industry projects. Second, we also work with FPGA logics, which
cannot be called software.

NuSMV. In the next section, we discuss tool support for I&C function
modelling and counterexample interpretation.

3.3. MODCHK—A practical i&c model checking tool

VTT has developed a graphical tool [44] called MODCHK (Fig. 5) for
verifying I&C application logics based on function block diagrams with
NuSMV.

MODCHK is used to:

1. Specify a library of vendor-specific basic function blocks with a text
editor.

2. Model the block diagrams with a graphical editor. Composite blocks
can also be specified, allowing for multilevel hierarchy [44]. The
composite elements are especially useful for modelling distributed
nuclear applications with redundant, identical divisions (see Fig. 5).

3. Specify the properties with a text editor.

. Generate the necessary input files and run NuSMV.

5. Visualize the counterexamples produced by NuSMV with an ani-
mated view [43] of the block diagram (see Fig. 5). Signals with an
invalid status are shown with a dashed line.

N

Each signal between the blocks carries both a Boolean or integer
value V, and the associated validity status (as a Boolean variable
V_FAULT). Inside the basic blocks, each input is also assigned a variable
V_CONNECTED, allowing the analyst to specify how unconnected in-
puts affect the processing logic.

The status processing logic is explicitly defined for each basic block.
As an example, in TELEPERM XS systems, “passive status processing”
means that the status of the output signal is formed by simply OR-gating
the status of each related input [40]. In “active status processing”, the
output value is only calculated from valid input signals [45].

To demonstrate “active” status processing, we show below the code
for an exemplar function block. The 1-out-of-2 voting block will output
TRUE if at least one of the two input signals is TRUE and valid, or if
both inputs are invalid.
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D Limited tool support
:l Fully manual
Fig. 4. Work process for the verification of vendor-specific I&C application logics.
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Fig. 5. MODCHK is a graphical tool for verifying composite function block diagrams with NuSMV.

MODULE _1o02(

2 BI1l, BI1_FAULT, B1_CONNECTED,
3 BI2, BI2_FAULT, BI2_CONNECTED)
4+ DEFINE

5 BOl1l := case

6 BI1_FAULT & BI2_FAULT TRUE;
7 (BI1 & !'BI1_FAULT) |

8 (BI2 & 'BI2_FAULT) TRUE;

9 TRUE FALSE;

10 esac;

3.4. Practical results from the nuclear industry

Since 2008, VTT has applied model checking in practical customer
projects in the Finnish nuclear industry [16]. The clients include (but
are not limited to) the nuclear regulatory body and two plant operators.

Olkiluoto 3 is an EPR under construction. On commission from the
Finnish Radiation and Nuclear Safety Authority (STUK), VTT has
evaluated the application logic of the Protection System and the
Priority and Actuation Control System. Both systems are based on the

TELEPERM XS platform, PS being a software-based system, and PACS
based on Field Programmable Gate Array (FPGA) technology.

The Loviisa NPP includes two reactors of the type VVER-4400. Old
analogue I&C systems have been replaced with modern digital tech-
nology (based on Rolls-Royce’s Spinline platform) in a renewal project.
On commission from the plant operator Fortum, VIT has performed
independent, third-party verification of the application logic of seven
different I&C systems. Based on the results, design modifications have
been made to the Reactor Trip System and the Reactor Power Control
System [16].

Hanhikivi 1 is an NPP planned to be built in Pyh&joki. The utility
Fennovoima has submitted a construction license application for an
AES-2006 type reactor. On commission from Fennovoima, VTT has
evaluated the Hanhikivi 1 functional architecture, which uses function
block diagrams to describe the safety functions of the plant in an early
design stage. VTT has detected design issues that could lead to spurious
actuation, contradictory commands, or otherwise incorrect response.

In all the above projects combined, between 2008 and 2019, VIT
has identified 57 design issues in I&C application logic. The reader
should note that the issues are about a single system not behaving ac-
cording to its stated requirements in some particular scenario, however
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Fig. 6. A counterexample scenario for spurious actuation (actual industry example).

unlikely. We wish to emphasise that we do not discuss the safety re-
levance of any issue, which may be purely theoretical’ Some of the
systems or functions have been considered in isolation-not accounting
for, e.g., the characteristics of the controlled process, or safeguards built
into other related systems—and any issue might therefore be practically
irrelevant in its actual context. VIT only modelled the application logic,
and no hardware failures were assumed. All the issues can therefore be
attributed to human error in the application logics’ design processes.

Of the 57 design issues, 21 (37%) deal with spurious actuation. We
can further divide these scenarios in two types:

1. Spontaneous spurious failure occurs when the criteria for actuation
has not been valid before the actuation command.

2. Stuck-on spurious failure occurs when the actuation command has
first been given based on valid criteria, but the command remains
set while the criteria no longer justify or allow it.

Sixteen of the detected issues are of the spontaneous type, and five
of the stuck-on type. The characteristics of the issues are described in
Appendix A. For each issue, we present a short generalized description,
and then list the property that revealed the issue, elements in the design
that introduce complexity, the number of function blocks and NuSMV
variables, the number of reachable states in the model, and time it took
NuSMV to verify the failing property.

The analysis times are based on experiments with an Intel Core i7-
6600U CPU with a clock rate of 2.6 GHz. NuSMV 2.6.0 was run on a
single core with the options “~int -dynamic”.

Some of the issues were found with a composite model containing
several different safety functions of the same system(s), which explains

S Discussion on the potential plant level effects for some of the issues can be
found in [46].

the model characteristics that are shared between issues 1-3, 6-7, and
11-12. In total, the issues in Appendix A were found in six different I&C
systems.

Notably, the “universal” spurious property (formula (6) in
Section 2.3) occurs in five of the examples, in two cases preceded by
G(p) — , which is usable for filtering out irrelevant executions, looking
for more counterexamples, or seeking to better understand model be-
haviour [29].

The PSL property never{p[*n]} is obviously convenient for ver-
ifying that signal p does not get stuck on (for n cycles, at least). In LTL,
the equivalent property is expressed with nested X operators.

3.5. A practical example of spurious actuation

We now present an example of a real design issue resulting in
spurious actuation, revealed using model checking in a practical in-
dustry project (issue 8 in Appendix A). The originally verified appli-
cation logic consisted of 73 function blocks. Here, we only include the
five blocks that are needed for reproducing the problematic scenario.
The appearance and the detailed processing logic of the function blocks
have been modified to obscure their origin. The simplified, masked
application logic can be found in Fig. 4. The PID Controller element is
represented in the NuSMV model by a simple abstraction.

The intended (here, simplified) functionality is PID control of a
safety actuator. When the control mode is switched on, the current
measurement value (based on second-minimum voting over four re-
dundant signals) is memorized, and then used as the setpoint for the
controller. When the control mode is switched off, the controller is
disabled.

The analyst discovered the issue by verifying a property not speci-
fically addressing spurious actuation, but the selection of the controller
setpoint. The property read, simplified: G
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—((measurement = 0) A measurement FAULT) — G — ((setpoint with
= 0) A enable)),
“measurement” meaning the output of the “2™! Max” block. In other
words, “assuming that the valid (actual) measurement is never zero,
then zero shall never be selected as the setpoint”. The issue would also
have been revealed by the spurious property (type (6) in Section 2.3):
G(((setpoint = n) A enable) - O((meas i.e.,, for any allowed
= n) A - measurement_FAULT)),

integer value n, “n can only be selected as the setpoint if a valid mea-
surement has at some point had the value n.” The counterexample
output by NuSMV is visualised in Fig. 6.

The counterexample begins at the initial state, where the mea-
surements have invalid status (dashed line in Fig. 6). The «ond Max”
block will in such a case output a user-configurable initial value, for
which the pre-set default value is zero. The value is output as such
(including validity) by the “Analog memory” block.

In the next state, the control mode is switched on at the exact same
processing cycle where the measurements turn valid. The “Analog
memory” block is switched to hold mode, and then keeps outputting the
previous input value for as long as the hold mode is on.

As the now valid measurement is almost certainly more than zero,
the simplified PID Controller element then issues the “close” command
spuriously. The analyst is aware that the PID element is not accurately
modelled, but also realises that a realistic PID component would—given
the incorrect set-point zero—also issue the “close” command.

The scenario would be difficult to detect using testing or simulation,
because:

1. situations where the system is rebooted to its initial state are very
rare, and here the reboot also coincides with invalid measurement
data,

2. two unrelated events (measurements turn valid, and control mode is
switched on) need to occur at the exact same processing cycle, and/
or

3. the analyst should know to focus on intricate details on how two of
the 73 blocks process validity.

With MODCHK, locating the cause of the spurious actuation is ty-
pically straightforward. The animated view highlights when the signal
targeted in the property is actuated, and the analyst can easily find the
states in the counterexample where that is the case. As the counter-
example can also contain states where the signal is actuated on demand
(e.g., the spurious actuation is of the “stuck-on” variety), the analyst
then needs to check the states to find the one(s) where the signal is
active without demand. Visualisation of the signal values helps the
analyst in navigating the diagram to see if the proper criteria are ful-
filled. For LTL properties, we have also developed a counterexample
explanation tool that can locate the state where the failure occurs [43],
which is particularly useful if the counterexample is long.

4. Single failure tolerance in model checking
4.1. Modelling approach for single failures

So far, we have only considered application logic issues, with the
assumption that the underlying hardware does not fail. Below, we
broaden our scope by including hardware failures.

Previous work on similar I&C application logic models [47] has
shown that modelling hardware failure modes to each processor and
communication link results in excessive verification times. We therefore
have to simplify the failure model, which is possible if we focus on
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single failure in open-loop models. To illustrate the concept, we use the
U.S. EPR PS (see Fig. 7), but the same approach is applicable to any
system with redundancies and a voting unit.

For the N + 2 criterion (see Section 3.1), we assume that the division
that is out of operation due to repair or maintenance will not drive the
actuators. We assume that an inhibition function is built into the
hardware and/or application logic. (For example, when a sensor is
placed in a maintenance bypass, a lockout attaches a faulty status to the
sensor’s signal [37].) The out-of-operation division will thus only issue
actuation orders if it fails. Below, we therefore focus on single failure
tolerance, in general.

As shown in Fig. 7, we use several simplifications. A single failure
can disable an entire division (e.g., consequential failure due to power
supply). That also means that the other three divisions cannot have any
failures (at the same time), otherwise the single failure criterion no
longer holds. Therefore, it follows that:

1. It is sufficient to model the failures for one division only.

2. We can pick any non-failing division, and if the divisions are iden-
tical, any verification result for that division (in Fig. 7, div. 1) will
hold for at least two other divisions. Therefore, there is no need to
model the outputs of the other divisions, which is why it is sufficient
to model the voting logics (ALUs) for just one division. The pro-
cessing logic before the selected ALU is needed, which is why we
include all the redundant APUs, but not the other ALUs. Such a
simplification is routinely used in VTT’s work to reduce the models’
complexity.

The included ALU cannot fail, because we have assumed that the
fully modelled division is not the failing one. In open-loop analysis, we
are not interested in the output of the potentially failing ALU, which is
why it can be excluded from the model altogether.

Another significant simplification we use is the injection of failure
points to a limited number of locations. At those locations, we assume
that the HW failure can have occurred in any part of the system that has
processed the signal by that point, and the signal is faulty from that
location on. Since we are primarily interested in how the application
logic running in the APU and ALU function processors interacts with
hardware failures, we inject the failures in two locations: (1), for each
signal entering the APUs of the failing division, and (2), for each signal
leaving the APUs of the failing division (see Fig. 7), i.e., between the
APU and ALU.

The final simplification has to do with how the failures are modelled
on the signal level. The model is not based on detailed analyses of
realistic hardware component failure modes. Instead, at the specified
failure points, the correct value of each signal is simply replaced with a
nondeterministic variable. The validity (status) of each signal is also
nondeterministic, i.e., the failure can be self-announcing or non-self-
announcing. Due to the nondeterminism, each signal may fail in-
dependently, or all signals may fail simultaneously (some passively,
some actively).

The two failure injection points cover all conceivable failure modes
of the hardware components [36,37] listed in Table 1. We assume a
network topology where any failure in a failed division cannot affect
the APU—ALU communication between the remaining redundant di-
visions.

The failure model is implemented in MODCHK (and the corre-
sponding NuSMV model) by inserting a module in the selected division
to signal connection to/from the affected APUs. Module FAULT BIN is
used for Boolean and FAULT ANA for integer signals. Both blocks have
the output FAILURE that allows the analyst to also observe the non-self-
announcing failures. The NuSMV source code for FAULT BIN is shown
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of a logic unit. Here, we included models where all four divisions were
originally modelled without severe performance issues.

The results are listed in Table 2. The analysis time is the average for
one to five different properties per language. NuSMV was executed as
explained in Section 3.4. All the CTL properties were true, while a third
of the LTL/PSL properties were false for both models. The numbers of
function blocks and NuSMV variables are for the original model, and do
not include the failure modelling elements.

From the results, it is apparent that computational overhead from
single failure modelling is practically negligible. The analysis times
might even decrease (see example 1). Despite a significant increase in
the state space (particularly examples 8 and 11), the maximum absolute

\
PACS
Failure injection points: . .
Each inplit and oﬁtput of each Not included in the
APU in one PS division NuSMV model.
Fig. 7. Simplification of the NuSMV model based on symmetry.
below.
1 MODULE FAULT_BIN(BI1l, BI1_FAULT,
2 BI1_CONNECTED)
3 VAR
4 fail boolean;
5 spurious boolean;
6 announcing boolean;
7 DEFINE
s BOl := fail ? spurious BI1l;
9 BOl_FAULT := fail ?
10 announcing BI1_FAULT;
11 FAILURE := fail;
12 FAILURE_FAULT := FALSE;

For FAULT_ANA, the integer values the signal can have upon failure
are given as a user-configurable parameter. To limit the state space
growth, the analyst might have to select only a few possible values. For
the input signals to APUs, the analyst can use the similarly discretized
values as the model inputs. For APU—ALU communication, the choice
might not be as straightforward, but the PS function diagrams in [37]
show only binary signals exchanged between APUs and ALUs.

4.2. Experimental evaluation

We evaluated the modelling approach using actual industrial ex-
amples. We collected suitable models that VTT had constructed for both
TXS and Spinline based four-redundant safety systems in practical
projects. Failures were then manually modelled for a single division.
For each model, between four and seven original properties were se-
lected, including true and false properties, and both CTL and LTL/PSL.
If needed, the properties were modified to account for the injected
failures. NuSMV was then used to calculate the effect of the failure
injection on the model state space and the analysis times.

The selected models did not represent the most complex functions
that VIT has verified, because such functions often have to be verified
by including only a single division, or one logic unit, or even just parts

increase in analysis time was 16,3 s (example 2). Relatively, the highest

Table 1
1&C hardware components that have their failures covered in the model.

Failure point Hardware components and systems

« Process sensors
« SCDS
- signal condition modules
- signal distribution modules
« Service Unit (SU)
» Hardwired connections
— sensor to SCDS
- SCDS to APU
— SU to MSI
+ Communication network
— MSI to APU
+ APU
- input module
After the APU + APU
- function processor
- communication module
- optical link module
« Power Supply (Class 1E
uninterruptible power supply, EUPS)
« Heating, ventilation, and air
conditioning (HVAC) system

Before the APU

Both points simultaneously
(consequential failures)
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Table 2
Comparison of NuSMV performance for no-failure against single failure models.
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No HW failures

One HW failure

Function NuSMV Reachable CTL LTL / Reachable Normalized CTL LTL /
blocks variables states (s) PSL states reachable (s) PSL
(s) states (s)

1 51 230 1,75 -10%° 32,8 75,1 3,14 -10% 2,04 - 10%° 4,90 57,5
2 179 893 3,96 - 10% 11,8 63,7 6, 64 - 10°2 1, 62-10% 17,2 80,0
3 78 354 1,29-10% 1,40 2,70 2,52-10'® 1, 64 - 10'° 3,70 3,80
4 72 318 5,20 - 10%° 1,20 0,92 1, 38 - 10%° 2,06 - 10*! 2,30 1,50
5 76 388 8, 85 -10*° 0,92 1,40 3,12-10% 8, 85-10%* 1,20 1,90
6 118 785 2,18 -10* 0,45 1,70 3,57 -10% 8,73-10%* 0,92 2,50
7 140 994 7,95 -10%® 0,30 0,66 6, 65 - 10%° 3,17 - 10%° 0,46 0,85
8 100 694 6, 56 - 10° 0,23 0,47 9,28-10"° 3,00- 10" 0,34 0,63
9 85 484 4,74 -10% 0,19 0,28 9, 68 - 10%* 1, 89 - 10*2 0,30 0,44
10 211 1229 1,57 -10" 0,11 0,50 7,21-10'° 1,57 - 10" 0,14 0,27
11 143 800 4,50 - 10" 0,10 0,17 3,96 - 10%® 4,50 - 10" 0,95 0,46
12 73 385 7,30 - 107 0,08 0,07 9,18-10%* 5,84-10'® 0,24 0,22
13 26 100 5, 80 - 10° 0,03 0,26 6,83 10" 6, 67 - 10'° 0,08 0,39

increase can be seen in examples where the analysis time was still parts
of a second. In example 2, the relative change is a 20% increase for CTL
and a 46% increase for LTL/PSL. We further found that the increase of
the state space is largely connected with the addition of non-
determinism within failure blocks—for example, adding a failure block
that can nondeterministically substitute the signal (as well as its va-
lidity status) by two different values expands the state space in at least
four times. We removed this effect by dividing the number of states by
the magnitude of this expansion, and the result is shown in the “nor-
malized reachable states” column of the table. Notably, in three cases
the result is the same as with no failures, meaning that the addition of
failures only influences the output values of models, not their memory-
stored state.

Finally, we visualized the connection between the number of
reachable states (normalized in case of one failure) and model checking
time in Fig. 8 where each data point corresponds to a pair of a model
and a number of failures. In order to make the distributions of state
space sizes and times close to normal, we took the logarithms of all the
values. The logarithm of model checking time of each checked property
was taken independently, and then the mean was calculated (thus, the
obtained values do not strictly correspond to any of the columns in
Table 2). Fig. 8 also shows linear regression trend lines for the cases of
no failures and one failure separately.

5. Related research
5.1. I&c software risk assessment

A lot has been written about the risk that spurious actuations pose to
plant safety, and the difficulty in analysing such failures. Proposed
solutions are harder to find. Nuclear regulatory bodies are working
towards consensus on regulatory guidance on evaluating spurious ac-
tuations [48].

Approaches for analysing the effects of spurious failures using
probabilistic safety assessment (PSA) are explored in [1]. PSA is a well-
established methodology for risk based-decision making. In nuclear
applications, it is used during design and operation for, e.g., identifying
weaknesses, and prioritizing components and systems for safety clas-
sification, testing, inspection, and maintenance [49]. Spurious actua-
tion failure modes can be “quite well covered” [1] in modern PSA
models, but there is no consensus on how to treat software relia-
bility [1,50]. There is also limited operational data available that would
support plausible reliability estimates for I&C application logics [46],
since failures of safety system application software are rarely observed
during operation [50].
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Our work, in turn, shows how design issues causing spurious ac-
tuation can be detected (and therefore eliminated) through determi-
nistic analyses. In addition to reducing the risk in practice, the results
(that indicate existence or non-existence of design faults) have an im-
pact on the estimated probability of a software failure [46]. Further-
more, the scenarios that model checking reveals (see Appendix A) could
lead to new failure modes and/or fault propagation paths added to the
PSA model [46], improving coverage.

In any case, a realistic assessment of overall safety calls for a ba-
lanced combination of both probabilistic and deterministic analysis
methods [51].

5.2. 1&c application logic verification

A great deal of the research on I&C system model checking has fo-
cused on the automatic generation of models based on standard PLC
languages, either IEC 61131-3 (e.g., [52-54]), or IEC 61499 [55]—or,
in the case of FPGAs, directly based on hardware description lan-
guages [56]. As we point out in Section 3.2, such approaches are not
directly applicable in the nuclear industry, where vendors use pro-
prietary function blocks with industry-specific, non-standard features
like status processing.

Due to the difficulty in mastering temporal logic languages, another
key research topic is user-friendly property specification. Dwyer et al.
have published an influential collection of property specification pat-
terns [31]. I&C domain specific patterns have been suggested in, e.g.,

Failures
® 0
1

Mean log;g(model checking time)

20 30 40 50
logyo(number of states)

Fig. 8. Scatter plot showing the dependency between the number of states in
the model and model checking time.
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Table 3
Related work on model checking and fault tolerance.
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Ref. Concept State Analysis Model Case system(s)

space size time checker(s)
[8] Deviation analysis - - NuSMV Aircraft altitude switch
[47] Functional verification incl. failures and plant transients - 30-110s NuSMV Nuclear safety systems
[9] Functional verification incl. failures - - SCADE, Simulink verifier Aircraft wheel brake system
[10] Functional verification incl. failures 196 608 30s Spin Spacecraft controller
[13] Functional verification incl. failures = 122767 AMC/JACK Railway interlocking system
[11] Functional verification incl. failures - - UPPAAL Aerospace system
[12] Functional verification incl. failures < 1,0 - 10%® < 12 min NuSMV Platform for satellite control systems
[14] Functional verification incl. FTA + FMEA - - NuSMV Automotive break-by-wire system
[65] Functional verification incl. FTA +FMEA < 3,8 - 10%® < 13 min NuSMV Aircraft power supply, braking system
[66] Model checking for automated FMEA < 35 - 10° < 4 days SAL Metal press, mine pump, drug infusion pump
[671 Model checking for automated FMEA - 4-10 min Spin Interface definition
[68] Probabilistic model checking in FMEA < 615600 < 12h PRISM Airbag system

[57], and different graphical languages are listed in [29] and [58].
In [59], formal requirements for automotive applications have been
collected in order to develop a specification language for I&C en-
gineering.

In the nuclear domain, model checking has been applied for I&C
software verification in Korea [60], Hungary [61], and at the European
Organization for Nuclear Research (CERN) [54]. In [60], successive
revisions of IEC 61131-3 function block diagrams were checked for
equivalence. In [54], IEC 61131-3 programs were transformed into a
network of synchronised automata. After property-preserving reduc-
tions, the intermediate model was then verified with nuXmv [62].
In [61], the verified system is also based on TELEPERM XS technology,
and the model includes signal status processing. The block diagram was
first reinterpreted as an “almost identical” Petri net, and CTL properties
were then verified with model checking. The authors however had to
constrain possible input values to the “most significant failure scenario”
in order to bring the number of states down to 46811. The use of
symbolic model checkers is mentioned as a future option.

Our approach has built-in support for custom (non-standard) func-
tion blocks, omits intermediate model transformation steps, and re-
quires no simplification of the model beyond the abstractions imposed
by heuristics. The downside is that the library of basic blocks has to be
specified manually.

5.3. Analysing hardware failure tolerance

Several studies address failure tolerance in the context of model
checking (see Table 3 for examples). In [9] and [10], failures are added
into a model of a two-redundant aerospace system, in order to verify
tolerance against single failure. In [12], an error model is added to a
nominal model of a satellite control system platform. In [13], the target
is a railway system. In [11], real-time model checking is used to verify a
three-redundant aerospace system. In [8], a system model duplicate is
given incorrect measurement data, and its performance is then com-
pared with the original model.

Failure modelling is related to failure mode and effects analysis
(FMEA) [63]—a bottom-up method for reviewing potential component-
level failure modes and their system-level effects—and fault tree analysis
(FTA) [64]—a top-down method where an undesired system state is
broken down to component-level events. In [14], FTA and FMEA are
used to assist in the modelling of transitions from normal to failed
states, and NuSMV is then used to verify system model conformity.
In [65], a NuSMV add-on called NuSMV-SA—capable of dynamic FTA
and FMEA-is used to analyse the behaviour of the system model in
degraded conditions. In [66] and [67], model checking is used to par-
tially automate FMEA by searching for system-level consequences of
low-level failures, with [67] focusing on software issues. In [68],
probabilistic model checking is used to identify the components that
contribute the most to system-level failures.
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A limitation in many of the proposed methods is that the system
model has to be kept very abstract, or the model becomes too complex
to be verifiable in reasonable time [10,47]. Instead of detailed design,
the target of verification is the “functional behaviour” [66], “early”
functional [14] or architecture level [12] model, “specified beha-
viour” [10], or other simplification. Model state spaces, when revealed,
can be relatively modest, processing times still rather long (see
Table 3), and there may exist “serious questions about the scal-
ability” [9]. (It should of course be noted that the performance data is
not directly comparable to ours[10]. and [13], for example, were
published two decades ago, using tools and processing power available
at the time.)

Closest to our work is [47], where nuclear I&C application logic
models similar to ours are supplemented with detailed hardware failure
modes, as well as accident and transient scenarios. A model containing
seven different safety systems is then verified using NuSMV. However,
the application logics have to be kept very simple, and even then, only
BMC based verification of invariant properties is practically fea-
sible [47].

Using our approach, we were able to include the hardware failure
modes without having to simplify the application logic model.

6. Discussion

The obvious conclusion from VTT’s customer work is that model
checking truly is an effective method for detecting I&C application logic
design issues that could result in spurious actuation of critical systems.
In addition, the data collected from the industry projects reveals in-
teresting statistics about what it is in the design of the logics that can
cause them to fail.

From Section 3.4, we see that each of the failed designs contained
either a memory or a delay element, or both. A memory element can be
either a flip-flop switch or latch, or any element that stores a value (e.g.,
a block whose output is based on last valid input value). Feedback loops
were found in four designs. (A feedback loop also introduces a memory/
delay element out of necessity, since the processing order of the blocks
needs to be explicit.)

One strength of function block diagrams as a programming language
is that it is relatively easy to understand the “flow” of processing from
inputs to outputs. However, memory and delay elements, feedback
loops, and blocks processing signal validity in an active way, all in-
terfere with the flow, making it harder to design and manually review
the logic. Delay and memory elements are also very common in I&C
application logics, due to, e.g., the dynamic characteristics of the pro-
cesses being controlled [29].

Let us also consider the oft-occurring characteristics of the coun-
terexample scenarios that revealed the design issues. First, in six cases,
the issue involved very exact timing of external events (independent
issues occurring on the same processor cycle). Second, four of the issues
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Table 4
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Oft-occurring characteristics in the failed designs and the scenarios that revealed the failures.

Spurious actuation All design issues

issues (count: 21) (count: 57)
Elements in the design Memory block (e.g., flip-flop switch) 76% 68%
Delay block 76% 60%
Feedback loop 19% 28%
Features in the counterexample scenario Exact timing of external events 33% 33%
Human user actions 24% 28%

Interaction of several I&C systems

Validity processing logic
Permanently frozen state

14% 14%
19% 11%
- 5%

involved human actions, i.e., personnel (operation of maintenance)
doing something ill-advised and/or ill-timed. Third, three issues re-
quired the interaction of several I&C systems for the problem to occur,
and analysing the systems in isolation would not have revealed the
issue. Validity processing logic was crucial in four issues.

In Table 4, we also list the prevalence of the above-mentioned
characteristics in all the 57 design issues identified in the industry
projects (including both active and passive failure). Out of the designs
that failed to actuate, three failed in a way that a signal froze perma-
nently to some value, requiring, e.g., system restart for recovery.

It is hard to draw further conclusions from the fact that 37% of the
detected issues were of the spurious kind. Most of the designs analysed
in the projects had already undergone verification and validation (V&V)
based on methods that are more conventional. Since spurious failures
are by their nature harder to analyse than passive failures [1], it is
likely that the spurious cases are over-represented in our data. The
“true” statistical share of hidden design issues potentially leading to
spurious failures is difficult to estimate.

In Sections 3.4 and 4.2, the number of reachable states in the
NuSMV model is shown to be as high as 8,85 - 10*°, or 3,12 - 10°°
when hardware failure modelling is included. Let us consider how such
a high number is possible, when the modelled system consists of mostly
binary logic. For n binary signals, there are obviously 2" possible value
combinations, or 22", if we include the status of each signal as a free
input. Internal memory elements also increase the state space. How-
ever, our models are not limited to binary logic. Since NuSMV can only
handle integer numbers and discrete time, we have to discretise several
model signals:

1. Analogue inputs are modelled as a range or enumeration of integer
variables. To limit the growth of the state space, the analyst can
limit the enumeration to a set of values that are sufficient to allow
for all relevant executions [40], e.g., by selecting one value below a
limit threshold, and another from above it.

2. If an analogue signal is memorized in the logic (e.g., a last-valid-
signal logic, or a cycle step delay needed to implement a feedback
loop), an integer variable needs to be added. If the analyst cannot
narrow down the possible values to a small set, the computational
cost increases significantly.

3. Each delay element needs its own internal clock variable, another
integer variable, for which a suitable range needs to be speci-
fied [40].

When we introduce the hardware failures, not only do we add
several free inputs (for each FAULT BIN and FAULT ANA element), we
also allow the model to reach states that it would not reach if the signals
inside the logic were deterministic (which, of course, is exactly our
objective in failure modelling).

Nevertheless, it is important to note that the number of reachable
states alone is not a sufficient (or necessarily even credible) measure of
computational complexity in model checking. From Table 2 in
Section 4.2, we can see that a model with 3, 12 - 10°° reachable states is

12

analysed in less than two seconds, while a model with 1, 75 - 10%
reachable states takes more than a minute to process. It is obviously
important to consider the analysis time when assessing practical ap-
plicability.

We made no effort to determine what the realistic failure modes for
the underlying I&C hardware components could be. In our non-
deterministic failure model, any kind of failure—conceivable or not—is
allowed. From the point of view of safety, such a view might be pre-
ferable. Still, the most unlikely failure we can think of is the “chaotic”
behaviour of a function processor (or an output module) where some of
its outputs fail actively while others passively. Such a scenario can be
feasible if the components overheat, which is possible if, e.g., the
ventilation system fails—a single failure [3,18]. Risk-based analysis
methods can be used to decide whether the cost of redesigning the
application logic to tolerate a highly improbable failure mode is justi-
fied [49].

In our experiments, we were able to show that the failure modelling
approach is applicable to models of real-world systems created in
practical industry projects. The computational overhead is practically
negligible. However, our experiments did not allow for a complete re-
verification of the target systems, and in any case, we did not identify
any previously unknown design issues. Whether design issues involving
both the I&C application logic design and the underlying hardware
component failures are actually identified (and how common they are)
remains to be seen in future customer projects.

Regarding the validity of our experiments, the failure modules were
inserted manually, using a graphical environment. Since our tools do
not yet automate the process, verifying that the failures were correctly
modelled was based on manual review. Second, any claims that we
make about the complexity of verification problems focus on the
practical applicability of using a specific tool. The heuristics of NuSMV
may be biased, which prevents us from making objective assessments of
the “actual” increase in complexity resulting from failure injection.
Third, there are many ways to express temporal properties, and the
selections used in our work may have a bias concerning the complexity
of verification. However, we assume that model checking performance
depends more on the model and the selected algorithm than the
property.

When using any formal method for verifying safety critical systems,
it is important to recognise the limitations in the formal descriptions,
methods and tools used [5]. In our approach:

e What is verified is whether the way function blocks are connected in
the diagram can result in unwanted behaviours. Modelling is based
on functional descriptions, and no assumptions are made about the
correctness of the function block source code, generated application
logic source code, or compiled machine instructions [40] (or, in case
of FPGA, the generated netlist or configuration).

The model is representative of the actual application logic only to a
certain degree. NuSMV can only handle elementary mathematical
operations with integers. Discretisation of real numbers and other
necessary abstractions are performed manually.
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e It is difficult to guarantee that all relevant properties have been
properly formalised. The requirement specification serving as input
might not be complete [40]. In any case, effort is needed from the
analyst to consider every aspect of a requirement (see Section 2.3).

e It is possible to make a human error both in specifying the model
and in formalising the property, so that the (false) property holds for
the (false) model, hiding both errors, and producing incorrect re-
sults [40].

e Correctness
proved [40].

of the model checker cannot be exhaustively

7. Conclusions

In this paper, we have shown that model checking can be used to
detect issues that could lead to spurious actuation of industrial I&C
systems, regardless of whether the cause of the actuation is a systemic
failure due to human error in application logic design, or a random
failure of hardware component. The way that we construct the model
accounts for plant transients, human actions (operators or maintenance
personnel), environmental conditions, and failures of support systems
(e.g., power supply, ventilation, testing equipment). We can inject the
hardware failure modes in the model without resorting to further ab-
straction and simplification in the way the application logic is mod-
elled. Model checking enables exhaustive verification, but only for the
properties that have been specified. The analysis results can only be
conclusive if the human user has captured every relevant property.
While direct errors in property specification are often revealed by
spurious counterexamples [43], omissions are another matter. For any
functional requirement addressing the intended response of the system,
there may be several properties needed to rule out unwanted beha-
viour. To make matters worse, there is no silver bullet for the more
general challenge of making formal property specification easy [43].

So far, we have focused on a single I&C system. When we consider
the entire overall I&C architecture of a nuclear power plant, single
failure tolerance becomes more complex to verify. If it takes several
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different I&C systems to carry out a safety function, the failure criterion
must be applied to the entire chain of systems—from measurements to
actuators, including all supporting systems—as a functional whole. In
our future work, we therefore need to broaden the scope. After all, 14%
of the design issues VTT has revealed result from the way several dif-
ferent I&C systems operate as a whole.

In our tools, further development is needed for automatic import of
the block diagrams, property editing, and counterexample explana-
tion [43]. We also aim to investigate whether tools such as nuXmv [62]
or HyComp [25] could be used to avoid some of the modelling sim-
plifications imposed by NuSMV.

The difficulty in analysing spurious actuation is tied to the challenge
of achieving 100% test coverage. The obvious benefit of formal ver-
ification is exhaustive coverage, and the ability to address unwanted
behaviour just as well as intended behaviour. The results of VTT’s
customer projects prove that systemic errors leading to spurious ac-
tuation of I&C systems are in practice detected with model checking. To
the best of our knowledge, it is the only truly effective method avail-
able. We hope our example inspires more widespread adoption of the
method, because there is no reason for the established use of industrial
I&C system model checking to be only limited to the Finnish nuclear
industry.
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Appendix A. List of detected design issues with spontaneous (1-16) and stuck-on (17-21) spurious failure

Desc. Failed Elements Func. NuSMV  Reachable  Analysis
property type in design blocks vars states time (s)
1 Actuation criterion is signals a and b being active at the same time. However, a remains in an internal memory (which is supposed to reset automatically). Later, signal b alone
can lead to actuation.
G(p AXq) » (XrvsVvYsVvYYs) memory,delay, feedback loop 130 530 4,52-103 0,42
2 Actuation of a safety function on a certain channel is supposed to be inhibited if signal a is true. However, if a first becomes active on channel 2, and then immediately for the
channel 1, actuation can (under certain conditions) occur on channel 1.
G(p < q) memory 130 530 4, 52.1038 0,22
3 Actuation criterion is signals a and b being active at the same time. However, a remains in an internal memory (which is supposed to reset automatically). Later, signal b alone
can lead to actuation.
G(p - 0q) memory, delay, feedback loop 130 530 4, 52.1038 0,22
4 If a channel is put to test mode, test inputs can set a memory element. When the channel returns to normal use, the stored signal leads to actuation.
G(p) - G(q — Or) memory, delay 118 779 2,18-10% 23,7
5 If a channel is put to test mode, test inputs can set a delay element. If the channel is immediately returned to normal use, the delayed signal leads to actuation.
G(p) - G(qg — Or) memory, delay 118 773 5, 45-1023 14,0
6 One of the criteria for an OPEN command is delayed in the logic, such that on demand, the CLOSE command is actuated instead.
always {p[*nl}|->{q}! delay 60 254 5, 39-1018 35,7
7 Actuation is supposed to occur if measurement a decreases below a limit value. However, actuation occurs at a certain range above the limit, instead.
G(p AXq) » Xr ~memory, delay 60 254 5,39-1018 8,6

gb Invalid (e.g., off-scale) measurements on system initialisation lead to a default value O being stored into memory. If the measurements return to normal at the exact same
moment the operator enables a controller, the controller uses the default 0 as the setpoint, and actuates a spurious “close” command.
Gp)—>G-gq memory, delay, feedback loop, controller (abstracted), filter 73 645 4, 57-1018 126
(abstracted)
9 An inhibition signal is supposed to prevent actuation, but it does not.
G(p - q) memory, delay 74 338 1, 29-10%5 37,9

13
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A delay logic is intended to return certain actuators to their normal position after a safety function actuation has successfully been carried out. However, the delay logic is

automatically actuated at system initialisation.

G(p - 0q) delay

4BMC was used, since analysis times otherwise exceeded several hours.

YThe issue is used as an example in Section 3.5.

11

12

13

14

15

16

17

18

19¢

20

21

Failed
property type

Elements
in design

Desc.

41 346 3, 21-1013 7,4
Func. NuSMV Reachable Analysis
blocks vars states time (s)

A permissive signal can be set through maintenance actions, regardless of process state justification, by manually setting the state of a memory element. A function can then be

actuated while it is supposed to be inhibited.

G(p) - G(@) memory

27

171 2, 81-1013 0,6

A permissive signal is set without the required operator acknowledgement if the process state justification for the permissive is valid at system initialisation. A function can then

be actuated while it is supposed to be inhibited.
G@p - q)

memory

Invalid (e.g., off-scale) measurements lead to an “open” command (as intended), but also to a simultaneous “close” command.

G(p - q) memory, delay

Contradicting measurements lead to an “open” command (as intended), but also to a simultaneous “close” command.

G-p memory, delay

27 171 2, 81-10183 0,6
146 29 4, 29-10'1 0,2
146 29 4, 29-10'1 0,2

Quick re-initialisation of a test by an operator, in combination with a very short signal pulse from an unrelated safety function, can interfere with the test sequence timing logic,

and lead to actuation without need.

G(p—-q) memory, delay, feedback loop

93

399 1, 52:10° 50,6

Measurement signal validity, in combination with how hysteresis is applied to a limit criterion, can lead to actuation even if there has never been a valid measurement above/

below the limit.

G(p — 0q) memory

13

86 1, 07-108 0,2

A startup sequence timing logic leaves the “start” command on for extended time, if the start criteria activate, the operator then resets the order, and the “start” command is then

reactivated through (same or other) criterion.

never {p[*n]} memory, delay

52

410 1, 11-10%° 50,8

A startup sequence timing logic leaves the “start” command on for extended time, if the start criteria activate, reset, and then reactivate with exactly the right timing.

never {p[*n]} delay

52

300 9, 48-1017 140

If the process criteria activate at the same cycle the operator presses reset, and the process criteria then reset at the same cycle the reset signal ends, the safety function remains

actuated (while no longer justified by the measurements).
Gp—-q) memory

33

146 4, 29-10'1 0,3

A delay logic is intended to return certain actuators to their normal position after a safety function actuation has successfully been carried out. However, if the process criteria are
set, then reset, and then again set with specific timing, both the “on” and “off” commands are activated simultaneously.

never {p[*n]} delay

29

168 1, 67-10%0 3,2

A fluctuating process measurement causes a timing logic to enter a state where one measurement change is not accounted for (due to another signal setting a delay element),

resulting in a command that the measurement no longer justifies.
G(p A Xq) = Xr delay

“The issue is used as an example in [17].
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